
皇天惊虞收集

Linux 下文件和目录的本质区别和组成

目录的递归原理

遇到目录自己调自己,

遇到文件,把文件放到数组中,同时自己调用自己

核心功能

检索文件–（如根据文件名、属性、内容）

目录结构

最重要的两个字段是文件名和物理地址

实现的方式是线性表

优点

十分简单

缺点

不允许文件名重复



皇天惊虞收集

分为主文件目录和用户目录，增加了用户管理

两级目录和多级目录都是树结构

分为目录对象和文件对象

文件的位置使用路径描述

问题聚焦：实现文件的存储

目录文件

目录文件信息叫做目录项



皇天惊虞收集

集中存放

优点

目录简单

因为文件名称是最关键信息，其他信息会造成存储空间过大。所以将其他属性信息进行压缩，形成分散存

放。（其他属性信息放在索引中）

所以采用分散存放的形式，需要根据需求选择目录文件存储的信息

文件目录

文件目录就是我们很熟悉的 Windows 操作系统的文件夹

文件控制块

实现文件目录的关键数据结构

目录本身就是一种结构文件,由一条条记录组成.每条记录对应一个放在目录下的文件。

目录文件中的一条记录就是一个文件控制块"FCB"
FCB 中包含了文件的一些基本信息

文件名

物理地址

逻辑结构

物理结构

存取控制信息

是否可读/可写

禁止访问的用户名单

使用信息(如文件的建立时间,修改时间)
FCB 实现了文件名到文件之间的映射,旨在实现按名存取.

功能

搜索

当用户要使用一个文件时,系统要根据文件名搜索目录,找到该文件对应的目录项

创建文件

创建一个新文件时,需要在其所属的目录中增加一个目录项

删除文件

当删除一个文件时,需要在其目录中删除相应的目录项

显示目录

用户可以请求显示目录的内容,如显示该目录中所有的文件及相应属性

修改目录

某些文件属性保存在目录中,因此这些属性变化需要相应的目录项(譬如重命名)。

目录结构



皇天惊虞收集

单级目录结构[不允许重名]
早期操作系统并不支持多级目录,整个操作系统中只简历一张目录表,每个文件占一个目录项。

不允许文件重名,不适应多用户操作系统。

两级目录结构[不能对文件进行分类]
分为主文件目录和用户文件目录

主文件目录记录用户名及其相应用户文件目录的存放位置

用户文件目录由该用户的 FCB 组成

允许不同用户的文件重名。文件名虽然相同,但是对应的其实是不同的文件。

两级目录结构不允许用户的文件重名,也可以在目录上实现访问限制(检查此时登录的用户名是否匹配)。

多级目录结构(树型目录)[不方便文件共享]

但是两级目录结构依然缺乏灵活性,用户不能对自己的文件进行分类。

用户要访问某个文件时要用文件路径名标识文件,文件路径名是个字符串。各级目录之间用’/'隔开。从根目

录出发的路径称为绝对路径。

我们可以设置当前目录,也就是相对路径,节省系统资源。

在引入了当前目录和相对路径后, 磁盘的 I/O次数减少了。这就提升了访问文件的效率。

总结:
树形目录结构可以很方便地对文件进行分类,层次结构清晰,也能够更有效的进行文件的管理和保护.但是,树
形结构不便于实现文件的共享。为此,提出了"无环图目录结构".

无环图目录结构

无环图目录结构在树形目录结构的基础上,增加了一些指向同一节点的有向边,使整个目录成为一个有向无

环图。可以更方便地实现多个用户间的文件共享。

可以为不同的文件名指向同一个文件,甚至可以指向同一个目录。

需要为每个共享节点设置一个共享计数器,用于记录此时有多少个地方在共享该节点。用户提出删除节点的

请求时,只是删除该用户的 FCB,并使共享计数器-1,并不会直接删除共享节点。只有共享计数器为 0 的时候,
才会真正的删除共享节点。

注意:共享文件不同于复制文件,在共享文件中,由于各用户指向的是同一个文件,因此只要其中一个用户修改

了文件数据,那么所有用户都可以看到文件数据的变化。

索引目录



皇天惊虞收集

索引节点是对 FCB 的改进,其实在查找各级目录的时候,只需要用到文件名,只有文件名匹配时,才需要读出文

件的其他信息。因此可以考虑让目录表瘦身来提升效率。

在 Linux 和其他类 Unix 文件系统中，文件和目录本质上都是由 inode 和数据块组成的：

文件：文件的 inode 存储了元数据（如所有者、权限、文件大小、创建和修改时间等）以及指向数据块的

指针。这些数据块存储了文件的实际内容。

目录：目录的 inode 同样存储了元数据和指向数据块的指针。不同的是，这些数据块存储的是一系列目录

项，每个目录项包含一个文件名和一个 inode号。这样，我们就可以通过文件名找到对应的 inode，并进

一步找到文件或者子目录的内容。

然而，这只是构成文件或目录的基本部分。在实际使用中，还需要考虑到如何组织这些文件和目录（比如

创建文件系统的目录结构），以及如何处理权限、所有权和其他安全性问题。这些都是构建和管理文件系

统的重要部分。

inode 详解

inode 这个词来自于 index node 的缩写，即索引节点。它在 Unix 类型的文件系统中被用来表示文件系统

对象（如文件和目录）的元数据。

在文件系统被初始化（例如，通过格式化操作）时，inode 会被创建并存储在磁盘上的特定区域。每个 inode

都有一个唯一的编号，系统通过这个编号来识别文件。

每个 inode 包含以下信息：

文件类型：普通文件、目录、字符设备、块设备、管道、链接、套接字等。

文件权限和所有者：读、写、执行权限，用户 ID（所有者）和组 ID。

时间戳：文件创建时间、最后访问时间、最后修改时间等。

文件大小。



皇天惊虞收集

指向文件数据块的指针。

注意，inode 不存储文件名。在 Unix 类型的文件系统中，文件名是存储在目录的数据块中的。目录是一

种特殊类型的文件，其数据块中存储了一组目录项，每个目录项都是一个文件名和一个 inode 号的映射。

通过这种方式，用户可以通过文件名来访问文件，而系统通过文件名找到对应的 inode，进而找到文件的

数据。这就是 Unix 类型文件系统中的 inode 工作原理。

inode 的数量是在文件系统初始化时决定的，通常根据文件系统的大小和预期的文件数量来计算。这意味

着，即使磁盘还有剩余空间，如果所有的 inode 都已经被使用，也无法再创建新的文件。

两者的区别

在 Linux 系统中，目录和文件的底层数据结构都是通过 inode (索引节点) 来进行管理的。inodes 存储有

关文件系统对象（如文件和目录）的元数据，比如对象的所有者、权限、创建和修改日期以及物理数据位

置等信息。

然而，目录和文件在这种管理方式中有着本质的区别：

文件：文件的 inode 存储了指向文件内容所在的数据块的指针，文件的内容就保存在这些数据块中。文件

的 inode 还保存了文件的各种属性，如文件大小、创建时间、所有者等信息。

目录：目录的 inode 不是直接指向数据内容，而是指向一种特殊的数据结构，我们通常称之为目录项

（Directory Entries）。每一个目录项包括两部分，一是文件名，二是指向该文件（或子目录）的 inode 的

指针。所以，目录实际上是一个特殊的文件，它的内容是一种映射关系，即文件名到 inode 的映射。因此，

目录可以包含其他文件或目录，这就构成了我们常见的文件系统的树状结构。

以上就是 Linux 下目录和文件的底层区别。目录的这种结构使得它可以包含文件和其他目录，从而形成复

杂的文件系统。

文件的组成

在 Linux 中，文件本质上是由 inode 和数据块构成的。



皇天惊虞收集

inode 是文件的元数据，包括了文件的所有者、权限、大小、创建和修改的时间戳等信息，以及指向实际

存储文件数据的数据块的指针。每个 inode 有一个唯一的编号，系统通过这个编号来识别文件。

而数据块则是存储了文件的实际内容，比如文本、图片、视频等。

所以，一个文件在文件系统中的存在，实际上就是一个 inode 和一系列数据块的组合。inode 提供了关于

文件的元数据和找到文件数据的路径，数据块则存储了文件的实际内容。

文件名和目录项则是在目录的数据结构中定义的。目录包含了一组目录项，每个目录项都是一个文件名和

一个 inode 编号的对应关系。通过这种方式，用户可以通过文件名来访问文件，而系统通过文件名找到对

应的 inode，进而找到文件的数据。

目录的组成

在 Linux 中，目录本质上也是由 inode 和数据块构成的。

不过，目录和文件的数据块中存储的内容是不同的：

文件的数据块中存储的是文件的实际内容，比如文本、图片、音频、视频等。

目录的数据块中存储的是一系列目录项。每一个目录项包含一个文件名和一个 inode 号。这样，用户可以

通过文件名找到文件，系统则通过 inode 号找到实际的文件内容。

这就是目录和文件在底层数据结构上的区别。总的来说，目录和文件都是由 inode 和数据块组成的，但是

它们的数据块中存储的内容有所不同。


	inode 详解
	两者的区别
	文件的组成
	目录的组成

